

Paper 2

Solution to Question 15

(a) It is given N = 4 and $\overline{x} = 55$. Since $\overline{x} = \frac{\Sigma x}{N}$, so $\Sigma x = \overline{x} \times N$ $= 55 \times 4$ = 220

It is given
$$\sigma = \sqrt{725}$$
.
Since $\sigma = \sqrt{\frac{\Sigma x^2}{N} - \overline{x}^2}$, so $\sqrt{725} = \sqrt{\frac{\Sigma x^2}{4} - 55^2}$
 $725 = \frac{\Sigma x^2}{4} - 55^2$
 $\frac{\Sigma x^2}{4} = 725 + 55^2$
 $= 3750$
 $\Sigma x^2 = 15000$

(b) When the number 10 is removed from the set, $\Sigma x = 220 - 10 = 210$ Thus, the new mean, $\overline{x} = \frac{\Sigma x}{N}$ $= \frac{210}{3}$ = 70

The new
$$\Sigma x^2 = 15\ 000 - 10^2 = 14\ 900$$

The new standard deviation, $\sigma = \sqrt{\frac{\Sigma x^2}{N} - \overline{x}^2}$
$$= \sqrt{\frac{14\ 900}{3} - 70^2}$$
$$= \sqrt{\frac{200}{3}}$$

(c) When the extreme value is removed, the mean is increased and the standard deviation is decreased.

Solution to Question 17

(a) It is given
$$N = 50$$
 and $\overline{x} = 11$.
Since $\overline{x} = \frac{\Sigma f x}{N}$, so $\Sigma f x = \overline{x} \times N$
 $= 11 \times 50$
 $= 550$

It is given $\sigma^2 = 8$. Since $\sigma^2 = \frac{\Sigma f x^2}{N} - \overline{x}^2$, so $8 = \frac{\Sigma f x^2}{50} - 11^2$ $\frac{\Sigma f x^2}{50} = 8 + 11^2$ $\Sigma f x^2 = 6 450$

(b) When two values from the class interval of 15 - 19 are removed from the set, the new $\Sigma fx = 550 - 2(17)$

= 516Thus, the new mean, $\overline{x} = \frac{\Sigma f x}{N}$ $= \frac{516}{48}$ = 10.75

The new $\Sigma f x^2 = 6 \ 450 - 2(17)^2 = 5 \ 872$ The new variance, $\sigma^2 = \frac{\Sigma f x^2}{N} - \overline{x}^2$ $= \frac{5 \ 872}{48} - (10.75)^2$ = 6.77