Paper 2

Solution to Question 15

(a) It is given $N=4$ and $\bar{x}=55$.

Since $\bar{x}=\frac{\Sigma x}{N}$, so $\Sigma x=\bar{x} \times N$

$$
\begin{aligned}
& =55 \times 4 \\
& =220
\end{aligned}
$$

It is given $\sigma=\sqrt{725}$.
Since $\sigma=\sqrt{\frac{\Sigma x^{2}}{N}-\bar{x}^{2}}$, so $\sqrt{725}=\sqrt{\frac{\Sigma x^{2}}{4}-55^{2}}$

$$
725=\frac{\Sigma x^{2}}{4}-55^{2}
$$

$$
\frac{\Sigma x^{2}}{4}=725+55^{2}
$$

$$
=3750
$$

$$
\Sigma x^{2}=15000
$$

(b) When the number 10 is removed from the set, $\Sigma x=220-10=210$

Thus, the new mean, $\bar{x}=\frac{\Sigma x}{N}$

$$
\begin{aligned}
& =\frac{210}{3} \\
& =70
\end{aligned}
$$

The new $\Sigma x^{2}=15000-10^{2}=14900$
The new standard deviation, $\sigma=\sqrt{\frac{\Sigma x^{2}}{N}-\bar{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{14900}{3}-70^{2}} \\
& =\sqrt{\frac{200}{3}}
\end{aligned}
$$

(c) When the extreme value is removed, the mean is increased and the standard deviation is decreased.

Solution to Question 17

(a) It is given $N=50$ and $\bar{x}=11$.

Since $\bar{x}=\frac{\Sigma f x}{N}$, so $\Sigma f x=\bar{x} \times N$

$$
\begin{aligned}
& =11 \times 50 \\
& =550
\end{aligned}
$$

It is given $\sigma^{2}=8$.
Since $\sigma^{2}=\frac{\Sigma f x^{2}}{N}-\bar{x}^{2}$, so $8=\frac{\Sigma f x^{2}}{50}-11^{2}$

$$
\begin{aligned}
& \frac{\Sigma f x^{2}}{50}=8+11^{2} \\
& \Sigma f x^{2}=6450
\end{aligned}
$$

(b) When two values from the class interval of 15-19 are removed from the set, the new $\Sigma f x=550-2(17)$

$$
=516
$$

Thus, the new mean, $\bar{x}=\frac{\Sigma f x}{N}$

$$
\begin{aligned}
& =\frac{516}{48} \\
& =10.75
\end{aligned}
$$

The new $\Sigma f x^{2}=6450-2(17)^{2}=5872$
The new variance, $\sigma^{2}=\frac{\Sigma f x^{2}}{N}-\bar{x}^{2}$

$$
\begin{aligned}
& =\frac{5872}{48}-(10.75)^{2} \\
& =6.77
\end{aligned}
$$

