CHAPTER 1: FUNCTIONS

Paper 1

Solution to Question 22

(a) Given $m(x)=\frac{a x+5}{x-3}$.

Let $\quad y=m(x)$

$$
y=\frac{a x+5}{x-3}
$$

$$
x y-3 y=a x+5
$$

$$
x y-a x=3 y+5
$$

$$
x(y-a)=3 y+5
$$

$$
x=\frac{3 y+5}{y-a}
$$

$$
m^{-1}(y)=\frac{3 y+5}{y-a}
$$

$$
m^{-1}(x)=\frac{3 x+5}{x-a}
$$

Compare with $m^{-1}(x)=\frac{b x+5}{x-2}$.
Thus, $a=2$ and $b=3$.
(b) From (a), $m(x)=\frac{2 x+5}{x-3}$ and $m^{-1}(x)=\frac{3 x+5}{x-2}$.

Given $\quad m(x)=m^{-1}(3)$
Hence, $\frac{2 x+5}{x-3}=\frac{3(3)+5}{3-2}$

$$
\begin{aligned}
\frac{2 x+5}{x-3} & =14 \\
2 x+5 & =14 x-42 \\
47 & =12 x \\
x & =\frac{47}{12}
\end{aligned}
$$

Solution to Question 31

Given $f(x)=m x+n, g(x)=(x+2)^{2}-5$ and $f g(x)=3(x+2)^{2}-20$.
(a) $\quad g^{2}(2)=g g(2)$

$$
\begin{aligned}
& =g\left[(2+2)^{2}-5\right] \\
& =g(11) \\
& =(11+2)^{2}-5 \\
& =169-5 \\
& =164
\end{aligned}
$$

(b) $\quad f g(x)=f\left[(x+2)^{2}-5\right]$

$$
\begin{aligned}
& =m\left[(x+2)^{2}-5\right]+n \\
& =m(x+2)^{2}-5 m+n
\end{aligned}
$$

Compare with $f g(x)=3(x+2)^{2}-20$.

$$
m=3 \text { and } \begin{aligned}
-5 m+n & =-20 \\
-5(3)+n & =-20 \\
n & =-5
\end{aligned}
$$

Thus, $m=3$ and $n=-5$.
(c) $\quad f(x)=3 x-5$

Let $y=3 x-5$

$$
x=\frac{y+5}{3}
$$

$$
f^{-1}(x)=\frac{x+5}{3}
$$

Thus, $g f^{-1}(x)=g\left(\frac{x+5}{3}\right)$

$$
\begin{aligned}
& =\left(\frac{x+5}{3}+2\right)^{2}-5 \\
& =\left(\frac{x+11}{3}\right)^{2}-5
\end{aligned}
$$

Paper 1

1. In the diagram, set B shows the images of certain elements of set A.

Clone
SPM
2006

(a) State the type of relation between set A and set B.
(b) Using the function notation, write a relation between set A and set B.
2. The diagram shows the function $f: x \rightarrow \frac{p}{x-p}, x \neq p$, where p is a constant.

Find the value of p.
3. A relation is represented by the set of ordered pairs, $\{(2,1),(3,2),(4,1),(5,3),(6,4)$, $(7,4)\}$. State
(a) the type of the relation.
(b) the range of the relation.
(c) the objects of 4 .
(d) the image of 2 .
4. Given $f: x \rightarrow \frac{p x-2}{x-4}, x \neq q$ and $f(2)=5$. Find the value of
(a) q.
(b) p.
5. Given $f: x \rightarrow a x+b$, where a and b are constants, $f(2)=1$ and $f^{-1}(7)=4$. Find the values of a and b.
6. Given $f: x \rightarrow \frac{4}{x-3}, x \neq h$. Find
(a) the value of h.
(b) the values of x for which f maps onto itself.
(c) $\quad \int f^{-1}(4)$.

