

Paper 1

Solution to Question 22

(a) Given
$$m(x) = \frac{ax+5}{x-3}$$
.
Let $y = m(x)$
 $y = \frac{ax+5}{x-3}$
 $xy - 3y = ax + 5$
 $xy - ax = 3y + 5$
 $x(y-a) = 3y + 5$
 $x = \frac{3y+5}{y-a}$
 $m^{-1}(y) = \frac{3y+5}{y-a}$
 $m^{-1}(x) = \frac{3x+5}{x-a}$
Compare with $m^{-1}(x) = \frac{b}{a}$

Compare with $m^{-1}(x) = \frac{bx+5}{x-2}$.

Thus, a = 2 and b = 3.

(b) From (a),
$$m(x) = \frac{2x+5}{x-3}$$
 and $m^{-1}(x) = \frac{3x+5}{x-2}$.
Given $m(x) = m^{-1}(3)$
Hence, $\frac{2x+5}{x-3} = \frac{3(3)+5}{3-2}$
 $\frac{2x+5}{x-3} = 14$
 $2x+5 = 14x-42$
 $47 = 12x$
 $x = \frac{47}{12}$

Solution to Question 31

Given
$$f(x) = mx + n$$
, $g(x) = (x + 2)^2 - 5$ and $fg(x) = 3(x + 2)^2 - 20$.
(a) $g^2(2) = gg(2)$
 $= g[(2 + 2)^2 - 5]$
 $= g(11)$
 $= (11 + 2)^2 - 5$
 $= 169 - 5$
 $= 164$
(b) $fg(x) = f[(x + 2)^2 - 5]$
 $= m[(x + 2)^2 - 5] + n$
 $= m(x + 2)^2 - 5m + n$
Compare with $fg(x) = 3(x + 2)^2 - 20$.

$$m = 3$$
 and $-5m + n = -20$
 $-5(3) + n = -20$
 $n = -5$

Thus, m = 3 and n = -5.

(c)
$$f(x) = 3x - 5$$

Let $y = 3x - 5$
 $x = \frac{y + 5}{3}$
 $f^{-1}(x) = \frac{x + 5}{3}$

Thus,
$$gf^{-1}(x) = g\left(\frac{x+5}{3}\right)$$
$$= \left(\frac{x+5}{3}+2\right)^2 - 5$$
$$= \left(\frac{x+11}{3}\right)^2 - 5$$

1.

Clone SPM

2006

SPM

2006

In the diagram, set *B* shows the images of certain elements of set *A*.

- (a) State the type of relation between set *A* and set *B*.
- (b) Using the function notation, write a relation between set *A* and set *B*.

2. The diagram shows the function $f: x \to \frac{p}{x-p}$, $x \neq p$, where *p* is a constant.

Find the value of *p*.

- 3. A relation is represented by the set of ordered pairs, $\{(2, 1), (3, 2), (4, 1), (5, 3), (6, 4), (7, 4)\}$. State
 - (a) the type of the relation.
 - (b) the range of the relation.
 - (c) the objects of 4.
 - (d) the image of 2.
- 4. Given $f: x \to \frac{px-2}{x-4}$, $x \neq q$ and f(2) = 5. Find the value of (a) q. (b) p.
- 5. Given $f: x \to ax + b$, where a and b are constants, f(2) = 1 and $f^{-1}(7) = 4$. Find the values of a and b.
- 6. Given $f: x \to \frac{4}{x-3}$, $x \neq h$. Find (a) the value of h. (b) the values of x for which f maps onto itself.

(c)
$$ff^{-1}(4)$$
.