

CHAPTER 9: TRIGONOMETRY II

Cloned SPM Question (2006, Paper 1)

In the diagram, *R* is the midpoint of the straight line *SQ*.

The value of $\cos \theta$ is

A	$\frac{4}{3}$	С	$\frac{3}{4}$
B	$\frac{4}{5}$	D	$\frac{3}{5}$

Solution

 $RQ = \frac{8}{2} = 4$ cm since *R* is the midpoint of *SQ*. Using Pythagoras' theorem on ΔPQR , $PO^2 = 5^2 - 4^2$ = 25 - 16=9 $PQ = \sqrt{9}$ = 3 cmThus, $\cos \theta = \frac{PQ}{PR}$ $=\frac{3}{5}$ Answer: **D**

Pointers

• Since $\cos \theta = \frac{\text{adjacent } PQ}{\text{hypotenuse } PR}$, the length of PQ needs to be determined first by using Pythagoras's theorem.

Cloned SPM Question (2006, Paper 1)

In the diagram, *KLN* is a right-angled triangle. It is given that KM = 15 cm, LN = 24 cm and *M* is the midpoint of *LN*.

Find the value of tan *x*.

A	_3	C	_3
	5	e	4
B	4	D	4
	5	D	$-\frac{1}{3}$

$$LM = \frac{24}{2} = 12 \text{ cm}$$
$$KL^2 = KM^2 - LM^2$$
$$= 15^2 - 12^2$$
$$= 81$$
$$KL = \sqrt{81}$$
$$= 9 \text{ cm}$$

Thus, $\tan x^\circ = -\tan \angle KML$

$$= -\frac{KL}{LM}$$
$$= -\frac{9}{12}$$
$$= -\frac{3}{4}$$

Answer: C

Pointers

- Note that x is an obtuse angle in quadrant II. Thus, $\tan x^\circ$ is negative with $\tan x^\circ = -\tan \angle KML = -\frac{KL}{LM}$
- Since ΔKLM is a right-angled triangle, *KL* can be determined by using Pythagoras' theorem after calculating the length of *LM*.

Cloned SPM Question (2006, Paper 1)

Which of the following represents the graph of $y = \cos x$ for $180^\circ \le x \le 360^\circ$?

Solution

 (Ξ)

 $\cos 180^\circ = -1$ and $\cos 360^\circ = 1$ are shown in graph **C**.

Answer: C