

CHAPTER 9: TRIGONOMETRY II

Paper 1

Solution to Question 16

By using Pythagoras' theorem on ΔUVR , $UR^2 = 5^2 - 4^2$ = 9 $UR = \sqrt{9}$ = 3 cmTherefore, $PR = 3 \times 2$ = 6 cm $\angle PRQ + \theta = 90^\circ$ $\angle PRQ + \angle QPR = 90^\circ$ too. Therefore, $\angle QPR = \theta$ Thus, $\cos \theta = \cos \angle QPR$ $= \frac{PQ}{PR}$ $= \frac{5}{6}$

Answer: **D**

Solution to Question 18

Given
$$\tan \angle PNQ = \frac{4}{3}$$

$$\frac{PQ}{6} = \frac{4}{3}$$
$$PQ = \frac{4}{3} \times 6$$
$$= 8 \text{ cm}$$

MP = 9 + 6 = 15 cm

Using Pythagoras' theorem on
$$\Delta PMQ$$
,
 $MQ^2 = 15^2 + 8^2$
 $= 289$
 $MQ = \sqrt{289}$
 $= 17 \text{ cm}$
 $\sin y = -\sin \angle PMQ$
 $= -\frac{PQ}{MQ}$

$$=-\frac{8}{17}$$

Answer: C

Solution to Question 21

Given JK = KM= 12+ 3 = 15 cm

Using Pythagoras' theorem on ΔJKL , $JL^2 = 15^2 - 12^2$

$$JL^{2} = 15^{2} - 1$$
$$= 81$$
$$JL = \sqrt{81}$$
$$= 9 \text{ cm}$$

 $\tan x = -\tan \angle JML$

$$= -\frac{JL}{LM}$$
$$= -\frac{9}{3}$$
$$= -3$$

Answer: C