CHAPTER 9: TRIGONOMETRY II

- Paper 1

Solution to Question 16
By using Pythagoras' theorem on $\triangle U V R$,

$$
\begin{aligned}
U R^{2} & =5^{2}-4^{2} \\
& =9 \\
U R & =\sqrt{9} \\
& =3 \mathrm{~cm}
\end{aligned}
$$

Therefore, $P R=3 \times 2$

$$
=6 \mathrm{~cm}
$$

$\angle P R Q+\theta=90^{\circ}$
$\angle P R Q+\angle Q P R=90^{\circ}$ too.
Therefore, $\angle Q P R=\theta$
Thus, $\cos \theta=\cos \angle \mathrm{QPR}$

$$
\begin{aligned}
& =\frac{P Q}{P R} \\
& =\frac{5}{6}
\end{aligned}
$$

Answer: D

Solution to Question 18

Given $\tan \angle P N Q=\frac{4}{3}$

$$
\begin{aligned}
\frac{P Q}{6} & =\frac{4}{3} \\
P Q & =\frac{4}{3} \times 6 \\
& =8 \mathrm{~cm}
\end{aligned}
$$

$M P=9+6=15 \mathrm{~cm}$
Using Pythagoras' theorem on $\triangle P M Q$,

$$
\begin{aligned}
M Q^{2} & =15^{2}+8^{2} \\
& =289 \\
M Q & =\sqrt{289} \\
& =17 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\sin y & =-\sin \angle P M Q \\
& =-\frac{P Q}{M Q} \\
& =-\frac{8}{17}
\end{aligned}
$$

Answer: C

Solution to Question 21

Given $J K=K M$

$$
\begin{aligned}
& =12+3 \\
& =15 \mathrm{~cm}
\end{aligned}
$$

Using Pythagoras' theorem on $\triangle \mathrm{JKL}$,

$$
\begin{aligned}
J L^{2} & =15^{2}-12^{2} \\
& =81 \\
J L & =\sqrt{81} \\
& =9 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\tan x & =-\tan \angle J M L \\
& =-\frac{J L}{L M} \\
& =-\frac{9}{3} \\
& =-3
\end{aligned}
$$

Answer: C

