CHAPTER 11: LINES AND PLANES IN 3-DIMENSIONS

Cloned SPM Question (2006, Paper 1)

The diagram shows a cuboid with a horizontal base EFGH.

Name the angle between the plane ELMH and the plane EHNK.
A $\angle M E N$
B $\angle M E K$
C $\angle M H N$
D $\angle M H K$

Solution

The planes ELMH and EHNK intersect at EH.
$E H$ is a normal to the plane $H G M N$.
Therefore, $\angle E H M=90^{\circ}$
$N H$ is a vertical edge to the horizontal base.
Therefore, $\angle E H N=90^{\circ}$

Thus, angle between the plane ELMH and the plane EHNK $=\angle M H N$
Answer: C

Pointers

- First, identify the line of intersection of the two planes ELMH and EHNK, which is the line EH.
- Then, identify one line on the plane ELMH and one line on the plane EHNK which are at right angle to the line $E H$ at the same point. Thus, the angle is $\angle M H N$ (or $\angle L E K$).

Cloned SPM Question (2006, Paper 2)

The diagram shows a right prism. The base $K L M N$ is a horizontal rectangle. The right-angled triangle $L M Q$ is the uniform cross section of the prism.

Identify and calculate the angle between the line $K Q$ and the base $K L M N$.

Solution

The angle between the line $K Q$ and the base $K L M N$ is $\angle Q K M$.
Using Pythagoras' theorem on $\triangle K L M$,

$$
\begin{aligned}
K M^{2} & =12^{2}+5^{2} \\
& =169 \\
K M & =\sqrt{169} \\
& =13 \mathrm{~cm}
\end{aligned}
$$

In the right-angled triangle $Q K M$,

$$
\begin{aligned}
\tan \angle Q K M & =\frac{10}{13} \\
\angle Q K M & =37^{\circ} 34^{\prime}
\end{aligned}
$$

Pointers

- $Q M$ is a normal to the base $K L M N$. Thus, the orthogonal projection of $K Q$ on the base $K L M N$ is $K M$. By definition, $\angle Q K M$ is the required angle.
- In the right-angled $Q K M$, the opposite side $Q M$ and the adjacent side $K M$ are involved. Thus, use $\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}$ to determine the required angle.

