CHAPTER 2: QUADRATIC EXPRESSIONS AND EQUATIONS

- Paper 2

Solution to Question 28
Given $x(x-12)+36=0$

$$
\begin{aligned}
x^{2}-12 x+36 & =0 \\
(x-6)(x-6) & =0 \\
x & =6
\end{aligned}
$$

Given that this is also a solution of the quadratic equation $a x^{2}-13 x=66$.
Hence, substitute $x=6$ into the equation:

$$
\begin{aligned}
a\left(6^{2}\right)-13(6) & =66 \\
36 a-78 & =66 \\
36 a & =144 \\
a & =4
\end{aligned}
$$

Solution to Question 29

Given $4 x^{2}-3 k x=k^{2}$ has a solution $x=5$.
Hence, substitute $x=5$ into the equation:

$$
\begin{aligned}
4\left(5^{2}\right)-3 k(5) & =k^{2} \\
100-15 k & =k^{2} \\
k^{2}+15 k-100 & =0 \\
(k-5)(k+20) & =0
\end{aligned}
$$

Thus, $k-5=0$

$$
\begin{aligned}
k+20 & =0 \\
k & =-20
\end{aligned}
$$

Solution to Question 30

Let the rate of filling tank P be $x \mathrm{~m}^{3} / \mathrm{min}$.
The rate of filling tank Q is $2 \mathrm{~m}^{3} / \mathrm{min}$ less than the rate of filling tank P.
Therefore, tank Q is filled at a rate of $(x-2) \mathrm{m}^{3} / \mathrm{mm}$.
Volume of each tank $=2000 \mathrm{~m}^{3}$
Time taken to fill $\operatorname{tank} P=\frac{200}{x} \min$
Time taken to fill tank $Q=\frac{200}{x-2}$ min \quad [longer time needed]
The difference in time taken to fill the tanks = 5 min

$$
\text { Hence, } \begin{aligned}
\frac{200}{x-2}-\frac{200}{x} & =5 \\
\frac{200 x-200(x-2)}{(x-2)(x)} & =5 \\
200 x-200 x+400 & =5 x(x-2) \\
400 & =5 x^{2}-10 x \\
0 & =5 x^{2}-10 x-400 \\
\div 5: \quad 0 & =x^{2}-2 x-80 \\
0 & =(x+8)(x-10) \\
x & =-8,10
\end{aligned}
$$

But $x>0$
Thus, $x=10 \mathrm{~m}^{3} / \mathrm{min}$

Paper 2

1. Solve the quadratic equation $\frac{5 m(m+3)}{4}=m+9$.

Clone
SPM
2006
2. Solve the quadratic equation $\frac{15}{2 x+7}=x$.
3. Find the roots of the equation $2 m-5=\frac{9 m}{m+4}$.
4. Solve $\frac{7 x+4}{2 x-1}=2 x-1$.

