(4) Cloned SPM Question (2005, Paper 1)

Solve the equation $x(3 x-4)=2 x-1$. Give your answers correct to three decimal places.

Solution

$$
\begin{aligned}
& x(3 x-4)=2 x-1 \\
& 3 x^{2}-4 x=2 x-1 \\
& 3 x^{2}-6 x+1=0 \\
& a=3, b=-6, c=1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&= \frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(1)}}{2(3)} \\
&=\frac{6+\sqrt{24}}{6} \text { or } \frac{6-\sqrt{24}}{6} \\
&=1.816 \text { or } 0.184
\end{aligned}
$$

Pointers

- All quadratic equation must be expressed in the general form $a x^{2}+b x+c=0$.
- If the question requires the answer correct to three decimal places, it means the equation cannot be factorised. Use the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to get the roots of the equation.

B Cloned SPM Question (2006, Paper 1)

The quadratic equation $x^{2}+p x+16=3 x$ has two equal roots. Find the possible values of p.

Solution

$$
\begin{aligned}
x^{2}+p x+16 & =3 x \\
x^{2}+p x-3 x+16 & =0 \\
x^{2}+(p-3) x+16 & =0 \\
a=1, b=p-3, c & =16
\end{aligned}
$$

For two equal roots, $b^{2}-4 a c=0$.

$$
(p-3)^{2}-4(1)(16)=0
$$

$$
(p-3)^{2}-64=0
$$

$$
(p-3)^{2}=64
$$

$p-3=8 \quad$ or $\quad p-3=-8$
$p=11 \quad p=-5$

Pointers

- It is easier to write $(p-3)^{2}=64$, and take the square root of both sides then to expand the equation and solve by factorising.
- Remember $\sqrt{64}= \pm 8$.

