Paper 1

Solution to Question 21
(a)

$$
\begin{aligned}
p x(x+3) & =3(x-1) \\
p x^{2}+3 p x & =3 x-3 \\
p x^{2}+(3 p-3) x+3 & =0
\end{aligned}
$$

Sum of roots:

$$
\begin{aligned}
\frac{1}{p}+q=\frac{1+p q}{p} & =\frac{-(3 p-3)}{p} \\
1+p q & =-3 p+3 \\
p q+3 p & =2
\end{aligned}
$$

Product of roots:

$$
\begin{array}{r}
\frac{1}{p} \times q=\frac{q}{p}=\frac{3}{p} \\
q=3
\end{array}
$$

Substitute $q=3$ into $p q+3 p=2$.

$$
\begin{aligned}
3 p+3 p & =2 \\
6 p & =2 \\
p & =\frac{1}{3}
\end{aligned}
$$

(b) When $p=\frac{1}{3}, 3 p=1$

When $q=3,-2 q=-6$
The roots are 1 and -6 .
Sum of roots $=1+(-6)=-5$
Product of roots $=1(-6)=-6$
Thus, the equation is

$$
\begin{array}{r}
x^{2}-(-5) x+(-6)=0 \\
x^{2}+5 x-6=0
\end{array}
$$

Paper 1

1. The quadratic equation $x^{2}+p x+25=3 x$ has two equal roots. Find the possible values

Clone SPM 2006
2.

Given the roots of the quadratic equation $x^{2}+(k-2) x+25=0$ are equal. Find the possible values of k.
3. Determine the roots of the quadratic equation $x^{2}+4 x-2=0$ by completing the square. Give the answer correct to four significant figures.
4. If the quadratic equation $x^{2}+3 x=k$ has real and distinct roots, show that $k \geq-\frac{9}{4}$. For the case when $k=4$, find the roots of the equation.
5. Given 4 is one of the roots of the quadratic equation $2 x^{2}+x=p$, where p is a constant.
(a) Find the value of p.
(b) Hence, find the other root of the equation.
6. Show that the straight line $y=4 x+3$ touches the curve $y=x^{2}+2 x+4$ at only one point. Hence, find the coordinates of the point.

