

CHAPTER 1: INTRODUCTION TO PHYSICS

Definitions of the SI Base Units

Base Unit	Unit	Explanation				
Length	metre	The metre is the length of the path travelled by light				
		in a vacuum during a time internal of 1/299 792 458				
		of a second.				
Mass	kilogram	The kilogram is the unit of mass; it is equal to the				
		mass of the international prototype of the kilogram.				
Time	second	The second is the duration of 9 192631 770 periods				
		of the radiation corresponding to the transition				
		between the two hyperfine levels of the ground state				
		of the caesium-133 atom.				
Electric current	ampere	The ampere is that constant current which, if				
		maintained in two straight parallel conductors of				
		infinite length of negligible circular cross-section and				
		placed 1 metre apart in a vacuum, would produce				
		between these conductors a force equal to 2×10^{-7}				
		newtons per metre of length.				
Thermodynamic	kelvin	The kelvin, which is the unit of thermodynamic				
temperature		temperature, is the fraction 1/273. 16 of the				
·		thermodynamic temperature of the triple point of				
		water.				
Amount of	mole	1. The mole is the amount of substance of a system				
substance		which contains as many elementary entities as				
		there are atoms in 0.012 kilogram of carbon 12; its				
		symbol is "mol".				
		2. When the mole is used, the elementary entities				
		must be specified and these may be atoms,				
		molecules, ions, electrons, other particles, or				
		specified groups of such particles.				
Luminous intensity	candela	The candela is the luminous intensity, in a given				
		direction, of a source that emits monochromatic				
		radiation of frequency 540×10^{12} hertz and that has a				
		radiant intensity in that direction of 1/683 watt per				
		steradian.				

SI base units

Order of Magnitude

In the study of physics, it is important to appreciate the order of magnitude of common physical quantities. The table below shows the order of magnitude of some chosen distances and time intervals.

Order of magnitude (<i>l</i> /m, T/s)	Distance, <i>l</i> /m	Time interval, <i>T</i> /s	
10^{20}	Radius of our galaxy	Age of Earth (10^{17})	
10 ¹²	Radius of solar system	History of man	
10 ⁸	Distance of the Moon from the Earth	Human life span	
107	Radius of Uranus	One year(3.15×10^7)	
10 ⁶	Radius of Earth	One month	
10^4	The east-to-west distance of Pulau Pinang	One day	
1	Man's height	Time between heart beats	
10-4	Thickness of Al foil	Period of highest audible sound	
10 ⁻⁷	Wavelength of visible light	Period of long radio waves	
10 ⁻¹⁰	Diameter of a molecule	Period of oscillation of Cs atom	
10 ⁻¹⁴	Diameter of a nucleus	Period of visible light	

Appreciation of order of magnitude

SI Prefixes

Factor	Name	Symbol	Factor	Name	Symbol
10^{24}	yotta	Y	10-1	deci	d
10^{21}	zeta	Z	10 ⁻²	centi	с
10 ¹⁸	exa	E	10 ⁻³	milli	m
10^{15}	peta	Р	10-6	micro	μ
10^{12}	tera	Т	10-9	nano	n
10^{9}	giga	G	10 ⁻¹²	pico	р
10^{6}	mega	М	10 ⁻¹⁵	femto	f
10^{3}	kilo	k	10 ⁻¹⁸	atto	а
10^{2}	hector	h	10 ⁻²¹	zepto	Z
10^{1}	deka	da	10 ⁻²⁴	yocto	у

The 20 SI prefixes used to form decimal multiples and submultiples of SI units are given in the following table.

SI Prefixes

It is important to note that the kilogram is the only SI unit with a prefix as part of its name and symbol. Because multiple prefixes may not be used, in the case of the kilogram, the prefix names of the above table are used with the unit name "gram" and the prefix symbols are used with the unit symbol "g". With this exception, any SI prefix may be used with any SI unit, including the degree Celsius and its symbol ⁰C.

Example 1: 10^{-6} kg = 1 mg (one milligram), **but not** 10^{-6} kg = 1µkg (one microkilogram)

Example 2: Consider the height, h of a building which is 169 000 mm.
We may write h =169 000 mm = 16 900 cm = 169 m = 0.169 km, using the millimetre (SI prefix milli, symbol m), centimetre (SI prefix centi, symbol c), or kilometre (SI prefix kilo, symbol k).

Because the SI prefixes strictly represent powers of 10, they should not be used to represent powers of 2. Thus, one kilobit, or 1 kbit, is 1 000 bit and **not** 2^{10} bit = 1024 bit. To alleviate this ambiguity, prefixes for binary multiples have been adopted by the International Electrotechnical Commission(IEC) for use in information technology.

Answers for "Think"

- 1. Yes, you can compare the taste of fried rice with that of 'nasi lemak' and decide which is more delicious.
- 2. Different people may have different opinions.
- 3. Taste is not a physical quantity. Further more, we do not have special units of measurement and measuring tools to measure taste.
- 4. Sincerity, beauty and intelligence are not physical quantities.

