CHAPTER 4: SIMULTANEOUS EQUATIONS

Paper 2

Solution to Question 14

$$
\begin{gather*}
x+2 y-2=0 \tag{1}\\
y^{2}+6 x+20=0 \tag{2}\\
\text { From (1): } x=2-2 y \tag{3}\\
\text { Substitute (3) into }(2) . \\
y^{2}+6(2-2 y)+20=0 \\
y^{2}+12-12 y+20=0 \\
y^{2}-12 y+32=0 \\
(y-4)(y-8)=0 \\
y=4 \text { or } y=8
\end{gather*}
$$

From (3): When $y=4, x=2-2(4)$

$$
=-6
$$

When $y=8, x=2-2(8)$

$$
=-14
$$

Hence, $(-6,4)$ and $(-14,8)$ are the solutions to the simultaneous equations.
Given $(2 m, n-1)$ is the point of intersection. Therefore,

$$
\begin{array}{rlrl}
& (2 m, n-1)=(-6,4) & \\
2 m=-6 & \text { and } & n-1 & =4 \\
m & =-3 & & n
\end{array}
$$

or

$$
\begin{array}{rlrlr}
& (2 m, n-1)= & (-14,8) \\
2 m & =-14 & \text { and } & n-1 & =8 \\
m & =-7 & & n & =9
\end{array}
$$

Thus, $m=-3, n=5$ or $m=-7, n=9$.

Solution to Question 17

Area of land planted with corn $=640 \mathrm{~m}^{2}$

$$
\begin{align*}
30 x-(30-y)(x-20) & =640 \\
30 x-(30 x-600-x y+20 y) & =640 \\
30 x-30 x+600+x y-20 y & =640 \\
x y-20 y & =40 \tag{1}
\end{align*}
$$

Perimeter of land planted with tapioca $=48 \mathrm{~m}$

$$
\begin{align*}
2(30-y)+2(x-20) & =48 \\
60-2 y+2 x-40 & =48 \\
2 x-2 y & =28 \\
x-y & =14 \\
x & =14+y \tag{2}
\end{align*}
$$

Substitute (2) into (1).

$$
\begin{aligned}
(14+y) y-20 y & =40 \\
14 y+y^{2}-20 y-40 & =0 \\
y^{2}-6 y-40 & =0 \\
(y-10)(y+4) & =0 \\
y=10 \text { or } y & =-4
\end{aligned}
$$

Dimension of width is positive, $y>0$. Hence, $y=10$.
From (2): $\quad x=14+10$

$$
=24
$$

Area of land planted with tapioca $=(30-y)(x-20)$

$$
\begin{aligned}
& =(30-10)(24-20) \\
& =20(4) \\
& =80 \mathrm{~m}^{2}
\end{aligned}
$$

