

CHAPTER 3: CHEMICAL FORMULAE AND EQUATIONS

Written practical test

Diagram 1(a) shows the apparatus set-up for an experiment to determine the formula of copper(II) oxide.

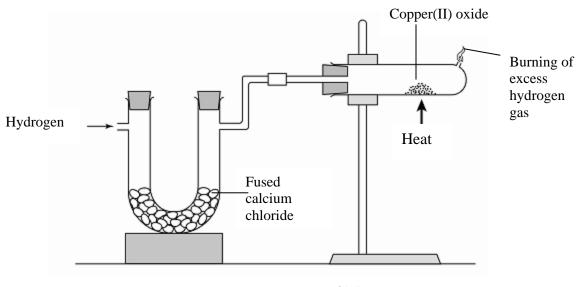


Diagram 1(a)

The test tube and contain were weighed.

Weight of test tube + asbestos paper:

Diagram 1(b)

Reading: _____

Weight of test tube + asbestos paper + copper(II) oxide:

 $Diagram \ l(c)$

Reading: _____

Weight of test tube + asbestos paper + copper:

Diagram 1(d)

Reading: _____

Answer the following questions:

(a)	(i)	Record the readings in the spaces provided.	[3 marks]
	(ii)	Construct a table to show all the data in this experiment.	[4 marks]
(b)	Calcula		
	(i)	the mass of copper formed.	[1 <i>mark</i>]
	(ii)	the number of moles of copper formed.	
		[The relative atomic mass of copper $= 64$]	[1 <i>mark</i>]
(c)	Calculate		
	(i)	the mass of oxygen in the copper(II) oxide.	[1 <i>mark</i>]
	(ii)	the number of moles of oxygen in the copper(II) oxide.	
		[The relative atomic mass of oxygen = 16]	[1 <i>mark</i>]
(d)	Calcul	ate the ratio of copper to oxygen.	[1 <i>mark</i>]
(e)	State th	he hypothesis of this experiment.	[1 <i>mark</i>]
(f)	Suggest the following variables in this experiment.		
	(i)	the manipulated variable	
	(ii)	the responding variable	[2 marks]
(g)	State t	hree fixed variables.	[3 marks]
(h)	Before the experiment was started, the apparatus should be free of any trapped air. Why?		
			[2 marks]

(i)	Suggest the part played by the fused calcium chloride.	[1 mark]	
(j)	What could be observed during the progress of the experiment?	[1 mark]	
(k)	State the product of the experiment.	[1 mark]	
(l)	Why was a stream of hydrogen passed through the test tube at the end of the experiment?		
		[1 mark]	
(m)	Write an equation for the reaction which occurred in this experiment.	[1 mark]	
(n)	Can the formula of magnesium oxide be determined by this method? Why?	[2 marks]	