(4) Cloned SPM Question (2006, Paper 1)

The diagram shows the straight line $P Q$ which is perpendicular to the straight line $Q R$ at the point Q.

The equation of the straight line $R Q$ is $2 y=x-5$. Find the coordinates of Q.

Solution

Equation of $Q R: \quad 2 y=x-5$
Gradient of $Q R=\frac{1}{2}$
Since $P Q$ is perpendicular to $Q R$, then the gradient of $P Q$ is -2 .
Equation of $P Q: \quad y=-2 x+6$
Substitute (2) into (1).

$$
\begin{aligned}
2(-2 x+6) & =x-5 \\
-4 x+12 & =x-5 \\
17 & =5 x \\
x & =3.4
\end{aligned}
$$

Substitute $x=3.4$ into (2).

$$
\begin{aligned}
y & =-2(3.4)+6 \\
& =-6.8+6 \\
& =-0.8
\end{aligned}
$$

Thus, the coordinates of Q are (3.4, -0.8).

Pointers

- If $P Q$ is perpendicular to $Q R$, then the product of their gradients $=-1$.
- From the gradient of $Q R$, find the gradient of $P Q$. Write the equation of $P Q$ and solve the two equations to find the point of intersection, Q.

B Cloned SPM Question (2006, Paper 2)

The diagram shows the triangle $O P Q$, where O is the origin. Point R lies on the straight line $P Q$.

(a) Calculate the area, in unit ${ }^{2}$, of triangle $O P Q$.
(b) Given that $P R: R Q=1: 3$, find the coordinates of R.
(c) A point S moves such that its distance from P is always twice its distance from Q.
(i) Find the equation of the locus of P.
(ii) Hence, determine whether or not this locus intersects the y-axis.

Solution

(a) Area of $\triangle O P Q=\frac{1}{2}\left|\begin{array}{cccc}0 & -4 & 3 & 0 \\ 0 & -3 & -2 & 0\end{array}\right|$

$$
\begin{aligned}
& =\frac{1}{2}|8-(-9)| \\
& =8.5 \text { unit }^{2}
\end{aligned}
$$

(b) Given $P R: R Q=1: 3$.

Coordinates of $R=\left(\frac{3(-4)+1(3)}{4}, \frac{3(-3)+1(-2)}{4}\right)$

$$
=\left(-\frac{9}{4},-\frac{11}{4}\right)
$$

(c) (i) Let the coordinates of S be (x, y).

$$
\begin{aligned}
S P & =2 S Q \\
\sqrt{(x+4)^{2}+(y+3)^{2}} & =2 \sqrt{(x-3)^{2}+(y+2)^{2}} \\
(x+4)^{2}+(y+3)^{2} & =4\left[(x-3)^{2}+(y+2)^{2}\right] \\
x^{2}+8 x+16+y^{2}+6 y+9 & =4\left(x^{2}-6 x+9+y^{2}+4 y+4\right) \\
3 x^{2}+3 y^{2}-32 x+10 y+27 & =0
\end{aligned}
$$

Thus, the equation of the locus of S is $3 x^{2}+3 y^{2}-32 x+10 y+27=0$.
(ii) When the locus of P intersects the y-axis, $x=0$.

Hence, $3 y^{2}+10 y+27=0$.

$$
\begin{aligned}
b^{2}-4 a c & =10^{2}-4(3)(27) \\
& =-224
\end{aligned}
$$

Since $b^{2}-4 a c<0$, the equation has no roots.
Thus, the locus of P does not intersect the y-axis.

Pointers

- Use the formula $\frac{1}{2}\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right|$ to find the area of the triangle.
- Use the formula $\left(\frac{n x_{1}+m x_{2}}{m+n}, \frac{n y_{1}+m y_{2}}{m+n}\right)$ to find the coordinates of R.
- Use the distance formula to find the locus of S.
- To determine whether the locus of S intersects the y-axis, substitute $x=0$ into the equation and use the discriminant $b^{2}-4 a c$ to determine if there is any root.

