CHAPTER 5: THE STRAIGHT LINE

Cloned SPM Question (2006, Paper 1)

The coordinates of point R are $(-2,3)$ and the gradient of the straight line $R S$ is 2 . The coordinates of point S could be
A $(2,-2)$
B $\quad(2,0)$
C $\quad(2,9)$
D $(2,11)$

Solution

Let the coordinates of point S be (x, y).
Therefore, gradient of $R S=2$

$$
\Rightarrow \quad \begin{aligned}
\frac{y-3}{x+2} & =2 \\
y-3 & =2 x+4 \\
y & =2 x+7
\end{aligned}
$$

From the options, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and $\mathbf{D}, x=2$
Thus,

$$
\begin{aligned}
& y=2(2)+7 \\
& y=11
\end{aligned}
$$

Coordinates of $S=(2,11)$
Answer: D

Pointers

- The coordinates of two points and the gradient are involved. So, use the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
- In all the options, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, x-coordinate $=2$. So, substitute $x=2$ into $y=2 x+7$ to find the corresponding value of y.

Cloned SPM Question (2006, Paper 1)

The diagram shows a straight line $P Q$ with a gradient of $-\frac{1}{2}$.

Find the x-intercept of the straight line $P Q$.
A $-\frac{2}{5}$
B $-\frac{5}{2}$
C $\quad-5$
D $\quad-10$

Solution

Gradient of $P Q=-\frac{1}{2}$ and y-intercept $=-5$
Thus,

$$
\begin{aligned}
-\left(\frac{-5}{x \text {-intercept }}\right) & =-\frac{1}{2} \\
x \text {-intercept } & =5(-2) \\
& =-10
\end{aligned}
$$

Answer: D

Pointers

- The question is about intercepts and gradient. So, use the formula $m=-\frac{y \text {-intercept }}{x \text {-intercept }}$.

Cloned SPM Question (2006, Paper 2)

The diagram shows a straight line $K L$ and a straight line $M N$ drawn on a Cartesian plane. $K L$ is parallel to $M N$.

Find
(a) the equation of the straight line $M N$,
(b) the x-intercept of the straight line $M N$.

Solution

(a) Gradient of $M N=$ Gradient of $K L$

$$
\begin{aligned}
& =\frac{6-0}{0-2} \\
& =-3
\end{aligned}
$$

The straight line $M N$ passes through point $N(7,-2)$.
Substitute $x=7, y=-2$ and $\mathrm{m}=-3$ into $y=m x+c$.

$$
\begin{aligned}
-2 & =-3(7)+c \\
c & =21-2 \\
& =19
\end{aligned}
$$

Thus, the equation of the straight line $M N$ is $y=-3 x+19$.
(b) When $y=0, \quad 0=-3 x+19$

$$
3 x=19
$$

$$
x=\frac{19}{3}
$$

Thus, the x-intercept of the straight line $M N$ is $\frac{19}{3}$.

Pointers

- (a) The straight line $K L$ passes through two known points. So, find its gradient by using $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
$M N$ is parallel to $K L$. So, they have the same gradient.
For $M N$, its gradient and one point on the line are known. So, use $y=m x+c$ to find c.
Remember to write $y=-3 x+19$ to earn full marks.
- (b) Substitute $y=0$ into $y=-3 x+19$ to find the x-intercept.

