CHAPTER 6: COORDINATE GEOMETRY

Paper 1

1. The diagram shows the straight line $P Q$ which is perpendicular to the straight line $Q R$.

The equation of the straight line $Q R$ is $y=x-2$. Find the coordinates of point Q.
2. Given that the equation of the straight line $A B$ is $p y=q x+p$ and the equation of the straight line $C D$ is $(p+q) y=x+q$. If $A B$ is perpendicular to $C D$, express q in terms of p.
3. \quad The straight line $4 y+3 x=12$ intersects the x-axis at point P and the y-axis at point Q. Find
(a) the coordinates of points P and Q.
(b) the distance of $P Q$.
4. Given $B(5, k)$ is a point on the line joining point $A(3,4)$ and point $C(8,12)$ such that $A B: B C=m: n$. Find
(a) $m: n$.
(b) the value of k.
5. A point S moves in such a way that the ratio of its distance from $P(2,3)$ to its distance from $Q(-4,6)$ is always $1: 2$.
(a) Find the equation of the locus of S.
(b) Determine if the point $R(1,-2)$ lies on the locus or not.
6. The diagram shows a straight line $P Q$ with the equation $6 x+4 y=12 . M$ is the midpoint of $P Q$.

Find
(a) the coordinates of M.
(b) the equation of $M R$.

Paper 2

1. The diagram shows the triangle $O A C$ where O is the origin. Point B lies on the straight

Clone SPM 2006 line $A C$.

(a) Calculate the area, in unit ${ }^{2}$, of triangle $O A C$.
(b) Given $A B: B C=1: 3$, find the coordinates of B.
(c) A point P moves such that its distance from point C is always twice its distance from point A.
(i) Find the equation of the locus of P.
(ii) Hence, determine whether or not this locus intersects the y-axis.
2. The diagram shows a parallelogram $A B C D$, where A lies on the y-axis. The equation of $A B$ and $B C$ are $2 y=x+6$ and $y=3 x-12$ respectively. Given the diagonals of the parallelogram intersect at the point $E(4,7.5)$. The line $B D$ produced intersects the y-axis at point F.

Find
(a) the coordinates of points B, C and D.
(b) the area of parallelogram $A B C D$.
(c) the coordinates of point F.
3. The diagram shows a triangle $A B C$ with an area of 10 unit 2. The equations of $A C$ and $B C$ are $2 y=x+4$ and $y+2 x=12$ respectively. Point A lies on the x-axis.

(a) Show that $A C$ is perpendicular to $B C$.
(b) Find the coordinates of points A, B and C.
(c) Find the perpendicular distance of C from the line $A B$.
4. In the diagram, $A B C$ is a straight line and point B divides $A C$ internally in the ratio $A B: B C=m: n$.

Find
(a) the equation of the line $A C$.
(b) the coordinates of point B.
(c) the ratio $m: n$.
(d) the equation of the straight line passing through B and perpendicular to $A C$.
5. A point P moves such that it is equidistant from the y-axis and point $A(2,0)$.
(a) Show that the equation of the locus of P is $y^{2}=4 x-4$.
(b) Show that point $B(5,4)$ lies on the locus of P.
(c) The line joining A and B meets the locus of P again at point C. Find
(i) the coordinates of point C.
(ii) the area of triangle $O B C$, where O is the origin.
6. Given $A(-3,-2), B(1,4)$ and $C(3,7)$ are three points in a Cartesian plane.
(a) Show that A, B and C are collinear.
(b) If B divides the line $A C$ in the ratio $m: n$, find this ratio.
(c) Find the equation of the line that passes through point B and is perpendicular to $A C$.
(d) The line in (c) intersects the x-axis at point E and the y-axis at point F.
(i) Find the coordinates of points E and F.
(ii) Hence, calculate the area of triangle $A E F$.

